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a b s t r a c t

High-resolution 1H NMR spectroscopy of biofluids is a good representation of metabolic pattern and
offers a high potential noninvasive technique for pathological diagnosis. Diagnosis of thalassemia and
quantification of some blood parameters can be performed by using 1H NMR spectra of human blood
serum in parallel with chemometric techniques. Spectra of 28 samples were collected from 15 adult
male and female thalassemia patients as experimental set and 13 healthy volunteers as control set.
Principal component analysis (PCA) as a dimension reduction tool was used for transforming spectra
to abstract factors. The abstract factors were introduced to linear discriminant analysis (LDA), which
is a common technique for classification, in order to establish adequate model for discrimination of
healthy and unhealthy samples. In addition, these abstract factors were used for calibration of some
blood parameters using radial basis function neural network (RBFNN) as an artificial intelligence modeling
etabonomics

lood serum
inear discriminant analysis
adial basis function neural network

method. Different test sets (left out samples in training algorithm) were used for evaluating the quality
and robustness of the built models. PCA abstract factors were employed as input for LDA model and
successfully classified all the members of the test sets except one member of third test set. RBFNN also has
a good capability for modeling the most of blood parameters according to proposed network parameters
optimization procedure. We conclude that 1H NMR spectroscopy, LDA and RBFNN assisted by PCA provide
a powerful method for thalassemia diagnosis and prediction of some blood variants.
. Introduction

Thalassemia is an inherited autosomal recessive blood disease
hat is commonly found in many parts of the world [1,2]. In tha-
assemia, genetic defect results in reduced rate of synthesis of one
f the globin protein chains that makes up hemoglobin and this
auses the anemia and several related diseases like bone related
isorders such as deformities, scoliosis and osteoporosis which are
he characteristic of presenting symptom and finally lead to death
3,4].

Many techniques have been used for screening and diagno-
is of hemoglobin variants and thalassemia [5]. Determination of

he genetic make up of the person in question and characteriza-
ion of human blood using complete blood cell count (CBC) are
he most reliable methods for diagnosis of thalassemia. However,
here is still a limitation in the analysis of data due to a large

∗ Corresponding authors.
E-mail addresses: Arjmand@pasteur.ac.ir, arjmand1@yahoo.com (M. Arjmand),

ompanym@iasbs.ac.ir (M. Kompany-Zareh).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.02.014
© 2010 Elsevier B.V. All rights reserved.

number of possible candidate characteristics and various types of
thalassemia and thalassemia trait [6]. However, using such meth-
ods, there would be no information about alterations in the patterns
of metabolites present in the biological materials that can give
valuable diagnostic information and mechanistic insight into the
biochemistry of disease processes and related abnormalities. Due
to the complexity of metabolites data in the biological samples,
chemometrics methods are necessary to extract the information
content of data. The obtained information from metabolite patterns
can be employed for classification and diagnosis purposes, or quan-
tification of different factors and metabolite concentration in the
complex biological samples such as blood serum. Early attempts
to formulate an automated classification of blood related diseases
were performed using image analysis [7]. In addition, statistics
based diagnosis of hematological abnormality [8], and clustering
of anemia, based on ferrokinetic parameters [9] are reported in

literatures. Recently, an implementation of a neural network, a
k-nearest neighbor technique and a support vector machine [10]
as a thalassemia diagnostic tool based on blood related parame-
ters was reported. Chaiyaratana and co-workers [11] presented a
method using neural network and a decision tree which evolved by
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variables called principal components [33,34]. In many cases, only
a few axes can define most of variation in data. In this way, PCA can
be used as a dimension reduction method [35] to simplify the work-
ing with huge data sets like NMR data sets and features extraction.
In many cases, PCA models can be applied for solving classification
230 M. Arjmand et al. / Ta

enetic programming, in thalassemia classification by inspecting
haracteristics of red blood cells, reticulocytes and platelets.

High-resolution 1H NMR spectroscopy of biofluids is a good rep-
esentation of metabolic patterns and provides information about
oth structure and composition of low molecular mass metabolites

n biological fluids. It is also a powerful, noninvasive technique for
nvestigating disease states in clinical studies [12,13]. Attempts to
n vivo and in vitro study of body iron overload by monitoring iron
evel in the fraction of tissue were performed by NMR spectroscopy
nd reported in several papers [14–16].

Application of chemometrics techniques has made a large
mprovement in the performance of NMR-based methods for inves-
igation of biological fluids. Pattern recognition (PR) and data
eduction methods have been applied on complex urine NMR
pectra to enhance the interpretation of spectral data [17]. Dimen-
ionality of the 1H NMR data can be reduced by using principal
omponent analysis (PCA). NMR in parallel with pattern recogni-
ion techniques has been used to classify several inborn errors of

etabolism using PCA of urine spectra [18] and blood spots [19].
ecently, the use of metabonomics and chemometrics to identify
atients suffering from coronary artery occlusion based on 1H NMR
pectra of blood serum has been highlighted [20]. In many cases,
CA models can be applied for data pretreatment [21], solving
lassification problems in NMR spectroscopy [22] and NMR-based
etabonomics [23]. However, in PCA, new basis sets are oriented

ccording to the largest variance and not the largest class separa-
ion ability. Linear discriminant analysis (LDA) is frequently used as
upervised pattern recognition technique for analysis of complex
MR data sets [22,24]. As far as we know, there is no report on the
pplication of 1H NMR spectroscopy for diagnosis of thalassemia
sing pattern recognition techniques, and first part of this report is
n this subject.

Second part of this article deals with quantification of some
ematological parameters using available 1H NMR spectra of
ealthy and unhealthy volunteers employing different multivari-
te calibration techniques. 1H NMR spectroscopy of human blood
erum used for the calibration of blood metabolites which char-
cterize thalassemia and related diseases, such as various types of
one disorder, will be the focus of our future work.

Artificial neural networks (ANNs) are non-linear calibration
echniques and have a great power to handle non-linear problems
s well as linear ones. Application of neural networks in quantifica-
ion of lipid content of human blood plasma and metabolites using
MR spectroscopy was reported in early works [25–27]. Among
NNs, radial basis functions neural networks (RBFNNs) offer some
dvantages over other ANNs. RBFNNs allow modeling of non-linear
ata using a linear approach and parameters can be adjusted by
ast linear methods with small training times and is ensured to
each the global minimum of error surface during training [28].
ecently, RBFNNs have been successfully applied in many mul-
ivariate calibrations and model development studies [29–31]. In
rder to bring up high predictive power of network we defined
criterion to find best network parameters and guarantee mini-
um possible error for quantification of blood related parameters.

CA scores are used as input for RBF network and thereupon num-
er of scores as dimensionality reduction parameter also should be
onsidered and optimized simultaneously with network param-
ters according to defined criterion. The data set used in this
nvestigation is highly informative and required minimum pre-
reatment and could be used for both classification and calibration
urposes with defined models in order to have discriminatory and

redictability power as high as possible. This work is the first appli-
ation of RBFNN in a NMR-based quantification in a biological
ample. In comparison with PLSR, significantly better performance
as obtained using RBFNN, as an intelligent flexible modeling

echnique.
1 (2010) 1229–1236

2. Materials and methods

2.1. Sample collection and preparation

Twenty-eight blood samples were collected from 15 adult male
and female �-thalassemia patients undergoing iron chelation and
blood transfusion as experimental set and 13 healthy individual
as control set from Imam Khomeini hospital at Tehran. Serum and
plasma samples were drawn in Vacutainers (BD Company, USA)
before patients being transfused and serum kept in 4 ◦C before set
of experiments. Complete blood cell count (CBC) was done within
1 h.

2.2. Instrumentation

All spectra were recorded at 25 ◦C on a Bruker 400 MHz
NMR spectrometer operating at 399.69 MHz for 1H (Fig. 1). For
each serum sample (150 �L 90%/10% mixtures of serum/D2O),
the free induction decay (FID) was weighted by an expo-
nential function with a 0.3 Hz line-broadening factor prior to
Fourier transformation (FT). Water pre-saturation pulse sequence
(D-90-t1-90-tm-90-acquired FID) with relaxation delays of 5 s
and flip angle 90 were used. The water signals and broad
protein resonances were suppressed by a combination of
pre-saturation and the Carr–Purcell–Meiboom–Gill (CPMG) (90-(t-
180-tn-acquisition) t′ = 200, n = 100) pulse sequence [32].

Calcium and phosphate level of serum samples were analyzed
by Roch-Hitachi-912 Autoanalyser and complete blood cell count
(CBC) performed using Automated Sysmex KX21-N hematology
counter.

2.3. Data analysis

All calculations were carried out using an Intel Celeron 3.20 GHz
computer running Windows XP operating system. PCA and LDA
were coded manually in MATLAB (Mathwork Inc.) for pattern
recognition analysis. Normalization and binning as preprocessing
methods were coded manually in MATLAB software too. RBFNN
was performed on dataset using MATLAB ANN toolbox.

2.3.1. PCA
PCA, as a linear projection method is based on variance, trans-

forms the original measurement variables into new uncorrelated
Fig. 1. 1H NMR spectra of (a) 13 healthy and (b) 15 unhealthy samples.
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roblems, if the class memberships are known in advance. How-
ver, in PCA, new basis sets are oriented according to the largest
ariance, not according to the largest class separation ability.

.3.2. LDA
Linear discriminant analysis (LDA) is a frequently used tech-

ique for dimension reduction and feature extraction. It projects
oints to a smaller dimension hyperplane using a linear function of
he variables, which maximizes between-class variance and mini-

izes the within-class variance, which fulfill maximum separation
mong the given classes. Description of the LDA algorithm can be
ound in Ref. [36] in detail.

.3.3. PLS
PLS-regression (PLSR) provides an approach to the quantitative

odeling of the complicated relationships between predictors, X,
nd responses, Y, by a linear multivariate model, but goes beyond
raditional regression by using structures of X and Y in modeling
rocedure instead of using the only structure of X.
.3.4. RBFNN
RBFNN [37] is a three-layer network in which the activation

unction in the nodes of the hidden layer is a radial type function.
uclidean distance between the input object and the center of the
adial basis function is the input of network. Adjusting the weights

Fig. 2. (a) 3D score plot from PCA analysis on raw spectral data; 2D sc
1 (2010) 1229–1236 1231

connecting the output layer and the hidden layer implemented
to minimize the mean square error of the net output. Gaussian
function is used here as activation function of RBFNN which is char-
acterized by two parameters, i.e. center (basis function) and width
(spread). Number of basis functions and spread value are the criti-
cal issues in constructing RBF networks. Some efforts are made in
solving this problem in intelligent way [38]. In our work, the best
structure of RBFNN is designed by defining an error related criterion
which is minimized in optimal network parameters.

3. Results and discussion

3.1. Classification of 1H NMR spectra

3.1.1. Principal component analysis of the 1H NMR spectral data
The data matrix which rows are 1H NMR spectra of samples

(Fig. 1) was subjected to PCA analysis. The large 1H NMR multivari-
ate dataset transformed by PCA into a low-dimensional space that
is more conducive to handling and visualization. The majority of
the structure in data can be represented in a small number of PCs

space instead of high dimension variable space by the scores asso-
ciated with these PCs for each observation. Fig. 2a shows the 3D
and 2D score plots from PCA analysis on raw spectral data. Each 1H
NMR spectrum denotes by a point in principal component space. 3D
score plot revealed that healthy and patient samples are not clearly

ore plot of (b) 1st vs. 2nd PC, (c) 1st vs. 3rd and (d) 2nd vs. 3rd.



1232 M. Arjmand et al. / Talanta 81 (2010) 1229–1236

F
r

d
s
f
t
v
s
t
i
s
t
i
s
o
c
i
i

3

l
p
u
t
i
v
L
o
b
i
s
g
s
s
b
a
u
L
s
m

a
b
N
n
c
o
s
a

Table 1
Number of misclassifications for calibration set (first arrangement) using different
preprocessed data at different number of PCs.

Number of scores Raw data Normalized spectra Binned spectra

2 9 6 10
3 4 4 9
4 5 6 5
5 2 2 2
6 1 4 3
7 1 2 3
8 1 4 2
9 3 4 3

10 2 4 1
11 1 6 0
12 1 3 0
13 2 4 0
14 2 3 0
15 3 4 0
16 1 2 0
17 2 3 1
ig. 3. Percentage of variance in first 15 PCs direction relative to total variance in
aw data matrix.

iscriminated in the space spanned by first three PCs and we cannot
eparate two groups by a straight line, although they approximately
ormed different clusters. In other words, information content in
he first three scores is not enough for discriminatory purpose and
isual investigation of more than three scores is not possible. Fig. 3
hows percentage of variance in first 15 PCs direction relative to
otal variance in raw data matrix. Although about 70% of variance
s included in first three PCs (as shown in Figs. 2 and 3), the results
how that three PCs are not enough for perfect discrimination in
he considered data set. Presence of 52.1% of variance in the first PC
ndicates the extent of similarity of the spectral data from different
amples (Fig. 3). In this way, determination of optimum number
f scores is a crucial point. When class memberships are available,
oordination of the points, which are PCA scores, were introduced
nto a supervised pattern recognition technique like linear discrim-
nant analysis (LDA).

.1.2. Linear discriminant analysis (LDA)
The number of variables in the data matrix (27,500) was too

arge to apply LDA directly on the data. In this way PCA as a sim-
le tool for dimension reduction with preserving information was
sed, and then, LDA was applied on scores from PCA because the
raditional LDA algorithm cannot be used directly due to singularity
n the within-class scatter matrix. In addition, the high-dimensional
ectors lead to computational difficulty. Application of PCA before
DA is reported in the literature [39]. Accordingly, the number
f scores as input for LDA was a crucial parameter that should
e considered. In order to find optimal number of PCs for build-

ng an optimal model for classification, total populations were
plit into seven sub-groups. One sample from each of seven sub-
roups was used to build test set and other three members in each
ub-group were chosen to form the training set. In this way, test
et included seven members and training set included 21 mem-
ers. In second step, leaved-one out cross-validation (LOOCV) was
pplied on training set. To build a proper classification model
sing LOOCV, different number of PCA scores was introduced into
DA and the left out sample was classified, as internal validation
ample. All samples in training set left out once and classified as
entioned.
As each sub-group included four members, four different

rrangements for training and test sets, consisting different mem-
ers were built in a similar way and were investigated concurrently.
umber of misclassification for training and test sets is related to

umber of input PCA scores introduced into LDA. Different prepro-
essing techniques like normalization and binning were performed
n raw data matrix before PCA-LDA based classification. Table 1
hows the number of misclassifications for different preprocessing
pproaches applied on data at different number of scores. Results
18 3 1 3
19 3 7 1
20 2 4 1

reveal that intensity of peaks in NMR spectra (norm of vectors)
is an important parameter in classification and normalization can
decrease the performance of discrimination according to increas-
ing number of misclassifications compared to the raw data set. Raw
1H NMR spectra was also compressed using binning technique (50
point integration width). Binning preprocessing has shown supe-
rior results with no misclassification using first 11 PCs as shown in
Table 1.

According to Table 1, binning of spectra (with a 50 points inte-
grating width) and using first 11 scores (SC = 11) from PCA resulted
in no misclassification. In this way, binning was employed as pre-
treatment before building the classification model. This model was
checked using training and test sets from four different arrange-
ments and all the samples in test set were classified correctly except
just one sample in the third arrangement that showed magnificent
predictability for built models. Number of scores (SC) for building
the model was chosen according to Table 1. Similar results were
obtained for raw (unpreprocessed) spectra too. The only difference
between these binned and unpreprocessed data results is the num-
ber of misclassifications in LOOCV, which shows that the results for
binned data are slightly better. Accordingly binning of spectra, as
a compression technique, can be used as preprocessing technique
for best discrimination between healthy and thalassemia patients.

3.2. Quantification of hematological parameters

After performing CBC analysis and determination of calcium and
phosphate level (mg dL−1), it is apparent that parameters related to
thalassemia disorder are significantly different for healthy (control)
and unhealthy (experimental) blood samples in hematological and
biochemical aspects according to box-plots in Fig. 4. Hematocrit
(HCT) and mean cell volume (MCV) values are scaled (divided by 10)
for better representation in the figure. These differences between
healthy and unhealthy populations could lead us to conclude that
the difference between NMR spectra of healthy and unhealthy
blood samples is related to biochemical and hematological dif-
ference of them and are informative enough to build calibration
models for prediction of these parameters.
3.2.1. Partial least squares
To develop a linear calibration model for quantification of each

blood variants, a PLS model was built. Number of PLS factors for
building the calibration model was the influencing factor on quality
of model. Accordingly, a criterion for determining optimal number
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ig. 4. Box plot representation of some biochemical (calcium (Ca) and phosphate (P
lood cell count (WBC), hematocrit (HCT), mean corpuscular volume (MCV) and me
etter representation, HCT and MCV values are scaled (divided by 10).

f PLS factors was defined. The criterion is representative for values
f error from both calibration and validation sets.

riterion = RMSEP% × |RMSEP% − RMSECV%| (1)

his criterion fulfills minimal difference between cross validation
rror of calibration set (RMSECV%) and prediction error of valida-
ion set (RMSEP%), and also minimum value for RMSEP% as possible.
t different number of PLS factors, RMSECV% was obtained using

eaved-one out cross validation (LOOCV) on calibration set and
MSEP% was calculated using built PLS model. In this way, for each
umber of PLS factors we have a criterion value. Best predictive
odel was obtained using optimum number of PLS factors at mini-
um value of criterion. Four different arrangements for calibration

nd validation sets were utilized, according to classification section.
able 2 shows RMSECV% and RMSEP% for four different arrange-
ents of calibration and validation sets. Appropriate number of

LS factors was obtained using first calibration and validation set

s mentioned before and used for analysis of other sets. According
o results, only for platelet count (PLT), phosphate and lympho-
yte percent (LYM%), RMSECV% and RMSEP% are below 10% just
or one of arrangements and for other parameters these errors are
igh. This mean that considered biochemical system is too com-

able 2
MSECV% and RMSEP% for different arrangements of calibration and validation sets at op

Hematological parameters Number of factorsa Arrangement 1 A

RMSECV% RMSEP% R

HGB 1 35.31 13.84 3
HCT 1 36.66 12.61 3
MCH 1 35.42 8.62 3
RBC 2 20.58 31.04 2
WBC 7 37.60 37.06 1
MCV 1 37.84 5.37 3
PLT 2 27.19 28.16 2
MCHC 2 20.09 24.89
Phosphate 3 8.30 4.33 1
Calcium 16 21.55 0.26
LYM% 2 17.69 5.90 1
MXD% 16 33.06 34.40 1
NEUT% 1 28.45 13.82 3
LYM# 5 54.26 0.09 3

GB: hemoglobin; HCT: hematocrit; MCH: mean corpuscular hemoglobin; RBC: red bloo
latelet count; MCHC: mean corpuscular hemoglobin concentration; LYM%: lymphocyte co
ount.

a Optimum number of factors was obtained using arrangement 1 for calibration and va
nd hematological parameters (red blood cell count (RBC), hemoglobin (HGB), white
puscular hemoglobin (MCH)) for healthy (cont.) and unhealthy (expr.) samples. For

plex to be modeled by a linear regression method like PLS. This
led us for applying artificial neural networks to improve modeling
performance.

3.2.2. Radial basis function neural network (RBFNN)
Same arrangements (training and validation sets) as in classifi-

cation section were used for calibration of different hematological
parameters using radial basis function neural networks (RBFNN).
Score values from PCA as input and values of hematological param-
eters as target were introduced into RBFNN for building the model.
Number of neurons in the network (MN), spread parameter in radial
basis function (SP) and number of scores as input (SC) were con-
sidered as the influencing factors on the estimated calibration and
validation error values. RMSECV% and RMSEP% values were esti-
mated for all possible combinations of different values for MN,
SP and SC. To fulfill minimal difference between RMSECV% and
RMSEP% and also the minimal value for RMSEP%, similar criterion

as used in PLS calibration (Eq. (1)) was utilized.

At different levels of SC, MN and SP, RBFNN was trained using
first training set and validated using first validation set (arrange-
ment 1). In each level of SC, MN and SP, defined criterion was
calculated using RMSECV% and RMSEP% and finally a cube of esti-

timum number of factors using PLSR.

rrangement 2 Arrangement 3 Arrangement 4

MSECV% RMSEP% RMSECV% RMSEP% RMSECV% RMSEP%

5.56 15.23 34.54 5.15 42.25 45.76
5.69 10.77 35.09 8.17 43.24 44.32
4.89 16.72 35.73 30.20 43.14 41.40
3.56 20.63 22.61 6.86 28.36 28.48
8.34 44.37 0.61 84.04 1.50 16.56
6.30 13.89 37.37 32.72 45.34 38.89
1.41 2.56 14.34 7.98 5.93 1.99
5.53 11.36 10.68 12.56 20.33 13.71
2.58 3.67 16.27 0.51 10.95 29.56
9.00 72.32 6.87 29.12 7.91 29.36
1.28 24.89 3.60 5.88 12.39 39.84
3.18 1.84 7.77 23.78 43.78 10.80
0.42 34.47 26.41 28.49 36.62 7.65
4.89 11.38 1.07 88.92 4.89 67.90

d cell count; WBC: white blood cell count; MCV: mean corpuscular volume; PLT:
unt percent; MXD%: mixed cell count; NEUT%: neutrophil count; LYM#: lymphocyte

lidation.
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ig. 5. Criterion cube calculated from Eq. (1) at different MN, SP and SC. The surface
P.
ated criteria was obtained (Fig. 5). We can plot a surface (MN vs.
P) for criterion at constant SC as shown in Fig. 5 but should find
inimum value of criterion in the whole cube and representing the

urface is just for better explanation. Minimum value in this cube

ig. 6. Surface plot of criterion at a constant SC (a) (SC = 13) in logarithmic scale for HGB
nd (d) (SC = 6) in logarithmic scale for HCT.
hows values of log(criterion) at constant SC and different combinations of MN and
shows the best MN, SP and SC to build the most predictive model.
For each hematological parameter, the cube was calculated sepa-
rately. In this way, for each hematological parameter an individual
model was built using different values of MN (from 2 to 20), SP

, (b) (SC = 10) in logarithmic scale for PHS, (c) (SC = 9) in logarithmic scale for MCH,
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Table 3
RMSECV% and RMSEP% for different arrangements of calibration and validation sets at optimum number of factors using RBFNN.

Hematological parameters Network parametersa Arrangement 1 Arrangement 2 Arrangement 3 Arrangement 4

SC MN SP RMSECV% RMSEP% RMSECV% RMSEP% RMSECV% RMSEP% RMSECV% RMSEP%

HGB 13 2 34 0.37 0.37 5.22 3.96 6.01 19.46 3.22 0.24
HCT 6 2 31 0.19 0.19 7.78 1.21 5.34 17.73 2.88 4.32
MCH 9 3 29 0.24 0.25 2.94 1.17 0.72 8.34 0.42 5.15
RBC 2 3 38 0.62 0.008 6.95 1.98 0.66 15.24 12.94 5.90
WBC 5 3 15 0.34 0.30 9.78 10.74 11.23 47.55 11.09 23.98
MCV 10 9 28 0.28 0.00 7.22 3.66 11.08 9.64 2.87 3.03
PLT 2 8 1 0.68 0.67 2.84 1.07 8.40 23.11 1.52 1.97
MCHC 5 12 22 0.03 0.03 8.23 7.70 2.18 4.73 1.16 2.87
Phosphate 10 11 3 2.47 2.47 2.70 4.22 11.93 9.46 1.22 16.75
Calcium 13 4 18 0.20 0.16 6.92 36.77 4.70 7.93 2.75 5.92
LYM% 5 11 22 0.11 0.26 16.27 12.56 30.14 40.45 4.67 38.07
MXD% 4 3 23 5.10 5.10 0.78 43.50 17.41 32.33 22.24 23.53
NEUT% 7 15 6 2.85 2.86 70.86 4.20 143.13 41.71 189.71 60.29
LYM# 5 2 8 18.85 18.85 8.89 4.02 1.16 76.94 15.77 32.65
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[4] P.E. Vichinsky, Ann. N. Y. Acad. Sci. 850 (1998) 344.
[5] S.K. Hartwell, B. Srisawanga, P. Kongtawelert, D. Christianc, K. Grudpana,
GB: hemoglobin; HCT: hematocrit; MCH: mean corpuscular hemoglobin; RBC: re
latelet count; MCHC: mean corpuscular hemoglobin concentration; LYM%: lymphoc
ount.

a Optimum number of scores and values for network parameters were obtained

from 1 to 40) and SC (from 2 to 15) with increment equal to 1 and
ube dimension 19 × 40 × 14 in this study. To determine the per-
ormance of the formed network, optimum values of MN, SC, and
P from the first arrangement was applied to build the calibration
odels for second, third and fourth arrangements. Fig. 6a shows

he surface plot of criterion in logarithmic scale at SC equal to 13
∼98.1% variance) which contains global minimum in defined crite-
ion cube which was calculated using first arrangement of training
nd validation set. The logarithmic scale was just used for bet-
er presentation of the surfaces. In ordinary scale, the plots were
ot clear and understandable. Fig. 6b–d also shows similar sur-

ace plots for optimization procedure of phosphate (PHS) (SC = 10),
ean corpuscular hemoglobin (MCH) (SC = 9) and hematocrit (HCT)

SC = 6) respectively. As shown in these figures, we utilized grid
earch (trying all possible combinations of the parameters) to find
he minimum criterion value (the best condition) and to avoid
rapping in the local minima. This may be a bit time-consuming
rocedure but we expected the noisy surface and presence of
any local minima. Globally, increasing the number of neurons

n the network architecture results in higher criterion value in all
ases that is due to overtraining of the RBFNN on training set and
ncreasing RMSEP%.

At SC = 13, MN = 2 and SP = 34 for RBFNN resulted in mini-
um criterion value for HGB, which means the minimum and

omparable RMSECV% and RMSEP% values for HGB (Fig. 6a). Sim-
lar methodology was used for other hematological parameters
nd the results are shown in Table 3. As shown in Table 3,
ifferent hematological parameters were modeled using differ-
nt SC, MN and SP and good results were obtained for most of
ematological parameters.

For HGB, HCT, MCH, MCV, PLT and MCHC, RMSECV% and RMSEP%
re low for the first, second and fourth arrangements and error is
igh for the third arrangement. This could be due to members of
alibration and validation set in the third arrangement. Members in
alidation set are acting an important role in building a predictive
odel and when we left them out, as validation set remaining ones

annot build a true predictive model. Hence, error values for the
hird arrangements are below 20% for these parameters except for
LT. In addition, error values for some hematological parameters
uch as MCH and MCHC are low for all arrangements that mean

hat they can easily be modeled by this procedure. According to
MSECV% and RMSEP% for LYM%, LYM#, MXD% and NEUT%, these
arameters was not models as well as others and model failed in
hese cases.
d cell count; WBC: white blood cell count; MCV: mean corpuscular volume; PLT:
unt percent; MXD%: mixed cell count; NEUT%: neutrophil count; LYM#: lymphocyte

arrangement 1 for calibration and validation.

4. Conclusions

In this paper, the 1H NMR spectra of human blood serum
were used for almost exact classification of normal persons and
those suffering from thalassemia. Quantification of some blood cell
parameters and variants was performed, as well. In the first part,
obtained 1H NMR spectra were binned and subjected to PCA. Four
arrangements were considered for calibration and validation sets
and accordingly the corresponding LDA models were built using
scores from PCA. Small number of misclassified samples for cali-
bration and validation sets showed the power of LDA based model
for discrimination of the two classes.

In the second part, quantification of some blood cell parameters
and variants were performed using multivariate calibration meth-
ods. PLSR, as a common linear regression method, was applied. The
obtained prediction error values were considerable and showed
that the complex relation between spectra and blood parameters
cannot be modeled in a linear manner. RBFNN as a non-linear cal-
ibration tool performed to build a model using scores from PCA.
Error of prediction for most of blood parameters was low compared
to PLSR method.

Totally, the high information content of 1H NMR in parallel with
specific modeling ability of RBFNN can be used as a tool for quan-
tification of metabolite content of biofluids which lead to a direct
insight in metabolism of many disorders and diseases which is
among our future outlooks.
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